Vanishing of Ext, Cluster Tilting Modules and Finite Global Dimension of Endomorphism Rings
نویسندگان
چکیده
Let R be a Cohen-Macaulay ring and M a maximal CohenMacaulay R-module. Inspired by recent striking work by Iyama, BurbanIyama-Keller-Reiten and Van den Bergh we study the question of when the endomorphism ring of M has finite global dimension via certain conditions about vanishing of Ext modules. We are able to strengthen certain results by Iyama on connections between a higher dimension version of Auslander correspondence and existence of non-commutative crepant resolutions. We also recover and extend to positive characteristics a recent Theorem by Burban-Iyama-Keller-Reiten on cluster-tilting objects in the category of maximal Cohen-Macaulay modules over reduced 1-dimensional hypersurfaces.
منابع مشابه
The Auslander-Reiten Conjecture for Group Rings
This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...
متن کاملCluster-tilted Algebras Are Gorenstein and Stably Calabi-yau
We prove that in a 2-Calabi-Yau triangulated category, each cluster tilting subcategory is Gorenstein with all its finitely generated projectives of injective dimension at most one. We show that the stable category of its Cohen-Macaulay modules is 3-CalabiYau. We deduce in particular that cluster-tilted algebras are Gorenstein of dimension at most one, and hereditary if they are of finite globa...
متن کاملVanishing of Ext-Functors and Faltings’ Annihilator Theorem for relative Cohen-Macaulay modules
et be a commutative Noetherian ring, and two ideals of and a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to with ........
متن کامل$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
متن کاملVanishing of Cohomology over Gorenstein Rings of Small Codimension
We prove that if M , N are finite modules over a Gorenstein local ring R of codimension at most 4, then the vanishing of Ext R (M,N) for n ≫ 0 is equivalent to the vanishing of Ext R (N,M) for n ≫ 0. Furthermore, if b R has no embedded deformation, then such vanishing occurs if and only if M or N has finite projective dimension.
متن کامل